Deteksi gangguan pada sistem kardiovaskular dan gastrointestinal menggunakan analisis denyut titik akupunktur dengan model crnn
A Akupunktur menjadi metode pengobatan alternatif populer di Indonesia, terutama bagi pasien yang menghindari operasi ingin melegakan tubuh. Penelitian ini bertujuan mengembangkan sistem deteksi dini gangguan kardiovaskular dan gastrointestinal menggunakan sensor photoplethysmography (PPG) pada titik akupunktur yang ditempatkan pada titik Taiyuan (LU9), Jingqu (LU8), dan Shenmen (H7), merekam denyut 369 responden selama 60 detik. Model Convolutional Recurrent Neural Network (CRNN) dikembangkan menggunakan TensorFlow untuk mengklasifikasikan pola denyut. Hasil menunjukkan akurasi training 95% dengan menggunakan metode train-test split validation, namun pada validation accuracy yang diuji menggunakan k-cross validation model ini mendapatkan akurasi 60-73%, mengindikasikan overfitting. Konversi ke TensorFlow-Lite membuat akurasi model menjadi turun ke 78% akibat proses kuantisasi. Pengujian pada 281 sampel yang belum diverifikasi menunjukkan kecenderungan model memprediksi mayoritas sampel ke dalam kategori gastrointestinal (75,44%) dan kardiovaskular (21,00%). Pengujian pada 5 subjek di luar data pengukuran menunjukkan kinerja yang menjanjikan, meskipun terdapat beberapa ketidakakuratan. Penelitian ini membuka peluang pengembangan alat diagnostik non-invasif berbasis Traditional Chinese Medicine, namun memerlukan peningkatan ukuran dataset, optimalisasi model untuk mengurangi overfitting, dan uji klinis lebih lanjut untuk meningkatkan akurasi dan reliabilitas.
A Acupuncture has become a popular alternative medicine method in Indonesia, especially for patients avoiding surgery and seeking a \\\"body lightening\\\" effect. This research aims to develop an early detection system for cardiovascular and gastrointestinal disorders using photoplethysmography (PPG) sensors on acupuncture points to help practitioners predict patients\\\' initial conditions. Three PPG sensors were placed on Taiyuan (LU9), Jingqu (LU8), and Shenmen (H7) points, recording 60-second pulse data from 369 respondents. A Convolutional Recurrent Neural Network (CRNN) model was developed using TensorFlow to classify pulse patterns. Results showed 95% training accuracy uisng train-test split validation, but 60-73% validation accuracy using k-cross validation, indicating overfitting. After conversion to TensorFlow Lite, model accuracy became 78% due to quantization. Testing on 281 unverified samples showed a tendency for the model to predict the majority of samples as gastrointestinal (75.44%) and cardiovascular (21.00%) disorders. Testing on 5 subjects outside the measurement data demonstrated promising performance, although with some inaccuracies. The system was integrated into a Flutter application for ease of use. This research opens opportunities for developing non-invasive diagnostic tools based on Traditional Chinese Medicine, but requires increasing the dataset size, optimizing the model to reduce overfitting, and further clinical trials to improve accuracy and reliability in acupuncture practice.