Pengaruh nanofilled resin coating terhadap kekasaran permukaan dan kekerasan semen ionomer kaca (laporan penelitian)
S Salah satu material restorasi kedokteran gigi yang terus dikembangkan adalah Semen Ionomer Kaca (SIK). Pada penelitian ini digunakan SIK tipe II (EQUIA Forte, GC, Japan) yang dimanipulasi secara mekanik dan dimasukkan ke dalam cetakan yang menghasilkan sampel berdiameter 6,0±0,3 mm dan tinggi 3,0±0,2 mm. Sampel SIK dibagi menjadi 2 kelompok yaitu 10 sampel SIK yang tidak dioles nanofilled resin coating sebagai kelompok kontrol dan sampel SIK yang dioles nanofilled resin coating sebagai kelompok perlakuan. Sampel kedua kelompok direndam dalam akuades steril selama 24 jam di dalam inkubator 37°C, setelah itu diuji kekasaran awal dan disikat selama 1 jam. Setelah penyikatan, sampel diuji kekasaran akhir. Data dari kedua kelompok diuji analisis secara statistik dengan uji t tidak berpasangan, yang menunjukkan tidak ada perbedaan yang signifikan (p>0,05) pada peningkatan kekasaran permukaan SIK kelompok kontrol (0,004±0,328 µm) dengan kelompok perlakuan yang dioles nanofilled resin coating (0,015±0,240 µm). Pada uji kekerasan, sampel SIK langsung diuji kekerasan awal dan kemudian direndam dengan akuades steril selama 24 jam di dalam inkubator 37°C. Setelah 24 jam, dilakukan pengujian kekerasan akhir. Uji statistik yang sama menunjukkan ada peningkatan signifikan pada kekerasan SIK apabila dilakukan pengolesan nanofilled resin coating. Kelompok diolesi coating memiliki peningkatan nilai kekerasan (131,14±36,15 VHN) lebih tinggi secara bermakna (p<0,05) daripada kelompok yang tidak diolesi coating (13,56±4,28 VHN). Dapat disimpulkan bahwa pengolesan nanofilled resin coating pada SIK meningkatkan kekerasan terutama setelah 24 jam, tetapi tidak mempengaruhi kekasaran permukaan.
O One of the restorative dental materials that is continuously developed is Glass Ionomer Cement (GIC). In this study GIC type II (EQUIA Forte, GC, Japan) was used to be mechanically manipulated and inserted into a mold which produced a sample of 6.0±0.3 mm in diameter and 3.0±0.2 mm in height. GIC samples were divided into 2 groups; 10 GIC samples were not coated with nanofilled resin coating as control group and 10 GIC samples were coated with nanofilled resin coating as treatment group. Samples of both groups were immersed in sterile distilled water for 24 hours in 37°C incubator, then tested for initial roughness. After brushed for 1 hour, samples were tested for final roughness. Both groups were analyzed statistically using unpaired t test, which showed no significant difference (p>0.05) on the increasing surface roughness of GIC between control group (0.004±0.328 µm) and treatment group that was applicated with nanofilled resin coating (0.015±0.240 µm). For hardness test, GIC samples were tested immediately and then immersed with sterile distilled water in a 37°C incubator. After 24 hours, GIC samples were tested for final hardness value. Same statistical test showed that there was significant difference in the hardness of GIC with the application of nanofilled resin coating. Coating group that had an increase in the hardness value (131.14±36.15 VHN) showed significantly higher (p<0.05) than non-coating group (13.56±4.28 VHN). It can be concluded that nanofilled resin coating on GIC increase hardness especially after 24 hours, however it did not influence surface roughness.